

January 7, 2026

DATA REQUEST RESPONSE LIBERTY UTILITIES (LIBERTY)

Data Request No.: SPD-LIB-WMP2026-002

Requesting Party: Safety Policy Division

Originator: Konstantin Lavor, Konstantin.Lavor@cpuc.ca.gov

cc: Arnold Son, Arnold.Son@cpuc.ca.gov
Tyler, Dunaway, Tyler.Dunaway@cpuc.ca.gov

Date Received: December 19, 2025

Due Date: January 7, 2026

Subject: WMP Clarifications

Q01.

For the Stateline Resiliency Project, provide the modeled Probability of Fire calculation inputs used to populate “Table 1-3: Effectiveness of Activities for the Stateline Resiliency Project” in Additional Liberty Response, per Critical Issue RN-LU-26-04 of Liberty’s 2026-28 WMP R1, for the “normal replacement” and “covered conductor” scenarios. Specifically:

- a. For each risk driver, provide the probability of ignition (POI), probability of failure, and probability of outage values applied under each scenario and
- b. Indicate which of these inputs differ between the two scenarios

Q01 Response:

a.

Risk Drivers			Scenarios			
			Normal Replacement With SRP	Covered Conductor With SRP	Covered Conductor Without SRP	Normal Replacement Without SRP
Risk Drivers	Pole	Probability of Ignition	0.444	0.444	0.458	0.458
		Probability of Failure	0.00437	0.00437	0.00436	0.00436
		Probability of Outage	0.98	0.98	0.98	0.98
		Probability of Fire Per Asset	0.0019040	0.0019040	0.0019552	0.0019552
	Conductor	Probability of Ignition	0.45	0.22	0.23	0.46
		Probability of Failure	4.135E-06	2.56E-06	2.56E-06	4.13E-06
		Probability of Outage	0.2574	0.2574	0.2574	0.2574
		Probability of Fire Per Asset	4.75E-07	1.47E-07	1.51E-07	4.87E-07
	Overhead Fuse	Probability of Ignition	0.515575385	0.515575385	0.530855385	0.530855385
		Probability of Failure	0.002644335	0.002644335	0.002644336	0.002644336
		Probability of Outage	0.7	0.7	0.7	0.7
		Probability of Fire Per Asset	0.000954348	0.000954348	0.000982632	0.000982632

b. The inputs differ primarily for conductor type. There are also differences in inputs attributed to SRP. In the table provided, the risk drivers are the assets included in the project being modeled. Other risk drivers such as weather and vegetation are included in the probability of failure score.

- The difference in probability of ignition for Poles is attributed to SRP.
- The 50% reduction of the probability of ignition given an outage is realized for covered conductor.
- Covered conductors have less probability of failure than bare overhead conductors.
- The difference in probability of ignition for fuses is attributed to SRP.

Q02.

Liberty states that adding poles and fuses into the model can reduce the apparent effectiveness of covered conductor (50% POI becomes 14% wildfire risk reduction). Annotate the response to question 1 to show how the CC POI reduction flows through the wildfire risk model to produce the final Probability of Fire values for each risk driver and in total shown in Table 1-3, and identify the drivers (e.g., poles, fuses, outage conversion) which account for the difference.

Q02 Response:

The final probability of fire is calculated using the following formula:

$$\frac{(POF \text{ per Pole} * \text{pole count}) + (POF \text{ per conductor} * \text{conductor count}) + (POF \text{ per fuse} * \text{fuse count})}{\text{pole count} + \text{conductor count} + \text{fuse count}}$$

$$POF \text{ per asset} = \text{Probability of Ignition} * \text{Probability of Failure} * \text{Probability of Outage}$$

$$\text{Conductor count} = \text{number of spans}$$

The risk drivers (assets) that account for the reduction in effectiveness in the two scenarios are the poles and fuses. Additionally, as the count of those assets increases, so does the probability of fire.

Q03.

Liberty explains the low modeled effectiveness (shown in Table 1-3) of SRP (~2%) by noting that SRP is only active during extreme conditions, representing approximately 7% of days in a year.

- a. Is covered conductor treated similarly in the model, such that its wildfire risk reduction is effectively realized only during high-risk wind/FFWI periods rather than across the full year?

Q03 Response:

- a. No, covered conductor is treated differently in the risk model. Its wildfire risk reduction is realized across all days of the year because it is a permanent system hardening measure that remains in place continuously. In contrast, Sensitive Relay Profile (SRP) is only effective when actively enabled, which occurs during periods of elevated fire risk; therefore, SRP's modeled effectiveness is limited to those high-risk days.